人如果基因发生变化会出现什么症状?

2025-05-09 09:07:12
推荐回答(1个)
回答1:

基因变异可以导致生物体发生变化,当然也有不变化的突变.如果发生在生殖细胞,则可以遗传到后代.这也是进化的重要原因.改变基因不一定使生物种性状发生改变
基因(遗传因子)是具有遗传效应的DNA片段。基因支持着生命的基本构造和性能。储存着生命的种族、血型、孕育、生长、凋亡过程的全部信息。环境和遗传的互相依赖,演绎着生命的繁衍、细胞分裂和蛋白质合成等重要生理过程。生物体的生、长、衰、病、老、死等一切生命现象都与基因有关。它也是决定生命健康的内在因素。因此,基因具有双重属性:物质性(存在方式)和信息性(根本属性)。
60年代初F.雅各布和J.莫诺发现了调节基因。把基因区分为结构基因和调节基因是着眼于这些基因所编码的蛋白质的作用:凡是编码酶蛋白、血红蛋白、胶原蛋白或晶体蛋白等蛋白质的基因都称为结构基因;凡是编码阻遏或激活结构基因转录的蛋白质的基因都称为调节基因。但是从基因的原初功能这一角度来看,它们都是编码蛋白质。根据原初功能(即基因的产物)基因可分为:
①编码蛋白质的基因。
②没有翻译产物的基因。
③不转录的DNA区段。
一个生物体内的各个基因的作用时间常不相同,有一部分基因在复制前转录,称为早期基因;有一部分基因在复制后转录,称为晚期基因。一个基因发生突变而使几种看来没有关系的性状同时改变,这个基因就称为多效基因。
数目不同生物的基因数目有很大差异,已经确知RNA噬菌体MS2只有3个基因,而哺乳动物的每一细胞中至少有100万个基因。但其中极大部分为重复序列,而非重复的序列中,编码肽链的基因估计不超过10万个。除了单纯的重复基因外,还有一些结构和功能都相似的为数众多的基因,它们往往紧密连锁,构成所谓基因复合体或叫做基因家族。
等位基因:位于一对同源染色体的相同位置上控制某一性状的不同形态的基因。不同的等位基因产生例如发色或血型等遗传特征的变化。等位基因控制相对性状的显隐性关系及遗传效应,可将等位基因区分为不同的类别。在个体中,等位基因的某个形式(显性的)可以比其他形式(隐性的)表达得多。等位基因(gene)是同一基因的另外“版本”。例如,控制卷舌运动的基因不止一个“版本”,这就解释了为什么一些人能够卷舌,而一些人却不能。有缺陷的基因版本与某些疾病有关,如囊性纤维化。值得注意的是,每个染色体(chromosome)都有一对“复制本”,一个来自父亲,一个来自母亲。这样,我们的大约3万个基因中的每一个都有两个“复制本”。这两个复制本可能相同(相同等位基因allele),也可能不同。下图显示的是一对染色体,上面的基因用不同颜色表示。在细胞分裂过程中,染色体的外观就是如此。如果比较两个染色体(男性与女性)上的相同部位的基因带,你会看到一些基因带是相同的,说明这两个等位基因是相同的;但有些基因带却不同,说明这两个“版本”(即等位基因)不同。
拟等位基因(pseudoalleles):表型效应相似,功能密切相关,在染色体上的位置又紧密连锁的基因。它们象是等位基因,而实际不是等位基因。
传统的基因概念由于拟等位基因现象的发现而更趋复杂。摩根学派在其早期的发现中特别使他们感到奇怪的是相邻的基因一般似乎在功能上彼此无关,各行其是。影响眼睛颜色、翅脉形成、刚毛形成、体免等等的基因都可能彼此相邻而处。具有非常相似效应的“基因”一般都仅仅不过是单个基因的等位基因。如果基因是交换单位,那就绝不会发生等位基因之间的重组现象。事实上摩根的学生在早期(1913;1916)试图在白眼基因座位发现等位基因的交换之所以都告失败,后来才知道主要是由于试验样品少。然而自从斯特体范特(1925)提出棒眼基因重复的不均等交换学说以及布里奇斯(1936)根据唾液腺染色体所提供的证据支持这学说之尼,试图再一次在仿佛是等位基因之间进行重组的时机已经成熟。Oliver(1940)首先取得成功,在普通果蝇的菱形基因座位上发现了等位基因不均等交换的证据。两个不同等位基因(Izg/Izp)被标志基因拚合在一起的杂合子以0.2%左右的频率回复到野生型。标志基因的重组证明发生了“等位基因”之间的交换。
非常靠近的基因之间的交换只能在极其大量的试验样品中才能观察到,由于它们的正常行为好像是等位基因,因此称为拟等位基因(Lewis,967)。它们不仅在功能上和真正的等位基因很相似,而且在转位(transpo-sition)后能产生突变体表现型。它们不仅存在于果蝇中,而且在玉米中也已发现,特别在某些微生物中发现的频率相当高。分子遗传学对这个问题曾有很多解释,然而由于对真核生物的基因调节还知之不多,所以还无法充分了解。
位置效应的发现产生了深刻影响。杜布赞斯基在一篇评论性文章中曾对此作出下面的结论;“一个染色体不单是基因的机械性聚合体,而且是更高结构层次的单位……染色体的性质由作为其结构单位的基因的性质来决定;然而染色体是一个合谐的系统,它不仅反映了生物的历史,它本身也是这历史的一个决定因素”(Dobzhaansky,1936:382)。
有些人并不满足于这种对基因的“串珠概念”的温和修正。自从孟德尔主义兴起之初就有一些生物学家(例如Riddle和Chiid)援引了看来是足够份量的证据反对基因的颗粒学说。位置效应正好对他们有利。Goldschmidt(1938;1955)这时变成了他们的最雄辩的代言人。他提出一个“现代的基因学说”(1955:186)来代替(基因的)颗粒学说。按照他的这一新学说并没有定位的基因而只有“在染色体的一定片段上的一定分子模式,这模式的任何变化(最广义的位置效应)就改变了染色体组成部分的作用从而表现为突变体。”染色体作为一个整体是一个分子“场”,习惯上所谓的基因是这个场的分立的或甚至是重叠的区域;突变是染色体场的重新组合。这种场论和遗传学的大量事实相矛盾因而未被承认,但是像Goldschmidt这样一位经验丰富的知名遗传学家竟然如此严肃地提出这个理论这件事实就表明基因学说还是多么不巩固。从1930年代到1950年代所发表的许多理论性文章也反映了这一点(Demerec,1938,1955;Muller,1945;Stadler,1954)。
复等位基因:基因如果存在多种等位基因的形式,这种现象就称为复等位基因(multiple allelism)。任何一个二倍体个体只存在复等位基中的二个不同的等位基因。
在完全显性中,显性基因中纯合子和杂合子的表型相同。在不完显性中杂合子的表型是显性和隐性两种纯合子的中间状态。这是由于杂合子中的一个基因无功能,而另一个基因存在剂量效应所致。完全显性中杂合体的表型是兼有显隐两种纯合子的表型。此是由于杂合子中一对等位基因都得到表达所致。
比如决定人类ABO血型系统四种血型的基因IA、IB、i,每个人只能有这三个等位基因中的任意两个。

相互作用编辑
生物的一切表型主要是蛋白质活性的表现。换句话说,生物的各种性状几乎都是基因相互作用的结果。所谓相互作用,一般都是代谢产物的相互作用,只有少数情况涉及基因直接产物,即蛋白质之间的相互作用。

非等位基因
非等位基因自由组合
依据非等位基因相互作用的性质可以将它们归纳为:
互补基因:
若干非等位基因只有同时存在时才出现某一性状,其中任何一个发生突变时都会导致同一突变型性状,这些基因称为互补基因。
异位显性基因:
影响同一性状的两个非等位基因在一起时,得以表现性状的基因称为异位显性基因或称上位基因。
累加基因:
对于同一性状的表型来讲,几个非等位基因中的每一个都只有部分的影响,这样的几个基因称为累加基因或多基因。在累加基因中每一个基因只有较小的一部分表型效应,所以又称为微效基因。相对于微效基因来讲,由单个基因决定某一性状的基因称为主效基因。
修饰基因:
本身具有或者没有任何表型效应,可是和另一突变基因同时存在便会影响另一基因的表现程度的基因。如果本身具有同一表型效应则和累加基因没有区别。
抑制基因:
一个基因发生突变后使另一突变基因的表型效应消失而恢复野生型表型,称前一基因为后一基因的抑制基因。如果前一基因本身具有表型效应则抑制基因和异位显性基因没有区别。
调节基因:
一个基因如果对另一个或几个基因具有阻遏作用或激活作用则称该基因为调节基因。调节基因通过对被调节的结构基因转录的控制而发挥作用。具有阻遏作用的调节基因不同于抑制基因,因为抑制基因作用于突变基因而且本身就是突变基因,调节基因则作用于野生型基因而且本身也是野生型基因。
微效多基因:
影响同一性状的基因为数较多,以致无法在杂交子代中明显地区分它们的类型,这些基因统称为微效多基因或称多基因。
背景基因型:
从理论上看,任何一个基因的作用都要受到同一细胞中其他基因的影响。除了人们正在研究的少数基因以外,其余的全部基因构成所谓的背景基因型或称残余基因型。

等位基因
基本类型
1932年H.J.马勒依据突变型基因与野生型等位基因的关系归纳为无效基因、亚效基因、超效基因、新效基因和反效基因。
无效基因
不能产生野生型表型的、完全失去活性的突变型基因。一般的无效基因却能通过回复突变而成为野生型基因。
亚效基因
表型效应在性质上相同于野生型,可是在程度上次于野生型的突变型基因。
超效基因
表型效应超过野生型等位基因的突变型基因。
新效基因
产生野生型等位基因所没有的新性状的突变型基因。
反效基因
作用和野生型等位基因相对抗的突变型基因。
镶嵌显性
对于某一性状来讲,一个等位基因影响身体的一个部分,另一等位基因则影响身体的另一部分,而在杂合体中两个部分都受到影响的现象称为镶嵌显性。