(2014?唐山三模)在斜三棱柱ABC-A1B1C1中,平面A1ACC1⊥平面ABC,AC⊥BC,A1B⊥C1C,AC=BC.(1)求证A1

2025-05-10 12:24:01
推荐回答(1个)
回答1:

(Ⅰ)∵平面A1ACC1⊥平面ABC,AC⊥BC,
∴BC⊥平面A1ACC1
∴A1A⊥BC.
∵A1B⊥C1C,A1A∥C1C,
∴A1A⊥A1B,又BC∩A1B=B,
∴A1A⊥平面A1BC,又A1C?平面A1BC,
∴A1A⊥A1C.
(Ⅱ)由已知及(Ⅰ),△A1AC是等腰直角三角形,AA1=A1C=2,AC=2

2

∵平面A1ACC1⊥平面ABC,
∴Rt△A1AC斜边上的高等于斜三棱柱ABC-A1B1C1的高,且等于
2
.)
在Rt△ABC中,AC=BC=2
2
,S△ABC=
1
2
AC?BC=4,
三棱柱ABC-A1B1C1的体积V=S△ABC?
2
=4
2

又三棱锥A1-ABC与三棱锥C-A1B1C1的体积相等,都等于
1
3
V,
∴三棱锥B1-A1BC的体积V1=V-2×
1
3
V=
4
2
3