(1)证明:∵E是AD的中点,
∴AE=DE.
∵AF∥BC,
∴∠FAE=∠BDE,∠AFE=∠DBE.
在△AFE和△DBE中,
,
∠FAE=∠BDE ∠AFE=∠DBE AE=DE
∴△AFE≌△DBE(AAS).
∴AF=BD.
∵AF=DC,
∴BD=DC.
即:D是BC的中点.
(2)解:四边形ADCF是矩形;
证明:∵AF=DC,AF∥DC,
∴四边形ADCF是平行四边形.
∵AB=AC,BD=DC,
∴AD⊥BC即∠ADC=90°.
∴平行四边形ADCF是矩形.