如何证明Ψ=max(f(x)+g(x))的连续性

2025-05-09 08:51:01
推荐回答(1个)
回答1:

证明:因为Φ(x)=max{f(x),g(x)}=(1/2)[f(x)+g(x)+|f(x)-g(x)|]
Ψ(x)=min{f(x),g(x)}=(1/2)[f(x)+g(x)-|f(x)-g(x)|]
都是由f(x)和g(x)经过四则运算而得到
而f(x)与g(x)都在x0处连续
所以Φ(x)和Ψ(x)在x0处也都连续!
注:这里需要记住两个公式:
max{a,b}=(1/2)[a+b+|a-b|]
min{a,b}=(1/2)[a+b-|a-b|]