y'=[1/(secx+tanx)]*(secx+tanx)'而(secx+tanx)'=(1/cosx+sinx/cosx)' =[(1+sinx)/cosx]' =[sinx(1+sinx)+cosx^2]/cosx^2 =[sinx+(sinx^2+cosx^2)]/cosx^2 =(1+sinx)/cosx^2所以y'=上式*[1/(secx+tanx)] =上式*[cosx/(1+sinx)] =1/cosx
求啥