(2012?徐汇区一模)如图,已知PA⊥平面ABC,AC⊥AB,AP=BC=2,∠CBA=30°,D,E分别是BC,AP的中点.(1

2025-05-07 23:53:30
推荐回答(1个)
回答1:

解答:解(1)解法一:取AB中点F,连接DF,EF,则AC∥DF,
所以∠EDF就是异面直线AC与PB所成的角.
由已知,AC=EA=AD=1 , AB=

3
 , PB=
7
,∵AC⊥EF,∴DF⊥EF.
在Rt△EFD中,DF=
1
2
 , ED=
2
cos∠EDF=
2
4

所以异面直线AC与ED所成的角为arccos
2
4
arctan
7
)

解法二:建立空间直角坐标系,C(1 , 0 , 0) , D (
1
2
 , 
3
2
 , 0)
,E(0,0,1),
AC
=(1 , 0 , 0 ) , 
ED
=(
1
2
 , 
3
2
 , ?1)

PCDEcosθ=
1
2
2
2
4

所以异面直线AC与ED所成的角为arccos
2
4

(2)△PDE绕直线PA旋转一周所构成的旋转体,是以AD
为底面半径、AP为高的圆锥中挖去一个以AD为底面
半径、AE为高的小圆锥,体积V=
1
3
π?1?2?
1
3
π?1?1=
1
3
π