已知数列{an}的各项均为正数,数列{bn},{cn}满足bn=an+2an,cn=anan+12.(1)若数列{an}为等比数列,求

2025-05-14 15:34:56
推荐回答(1个)
回答1:

解答:证明:(1)因为数列{an}为等比数列,所以

an+1
an
=q(q为常数),
又因为cn=anan+12
所以
cn+1
cn
=
an+1?
a
an
?a
=q3为常数,所以数列{cn}为等比数列;
(2)因为数列{cn}是等比数列,所以
cn+1
cn
=q(q为常数),
所以
cn+1
cn
=
an+1?
a
an
?a
=
a
an
?a
=q(q为常数),
a
an
?a
=
a
an+2
?a

所以
a
a
=
an+2?an+3
an
?a

∵bn=
an+2
an

故bn+22=bn+1?bn
因为bn+1≥bn,所以bn+2≥bn+1,则bn+22≥bn+12≥bn+1?bn
所以bn+2=bn+1=bn
an+3
an+1
=
an+2
an
,即an+3=an+1?
an+2
an

因为数列{cn}是等比数列,所以
cn+1
cn
=
cn+2
cn+1
,即
a
an
?a
=
a
an+1
?a

把an+3=an+1?
an+2
an
代入化简得an+12=an?an+2
所以数列{an}为等比数列.