解答:证明:(1)因为数列{an}为等比数列,所以
=q(q为常数),an+1 an
又因为cn=anan+12.
所以
=cn+1 cn
=q3为常数,所以数列{cn}为等比数列;
an+1?
a
an
?a
(2)因为数列{cn}是等比数列,所以
=q(q为常数),cn+1 cn
所以
=cn+1 cn
=
an+1?
a
an
?a
=q(q为常数),
a
an
?a
则
=
a
an
?a
,
a
an+2
?a
所以
=
a
a
,
an+2?an+3
an
?a
∵bn=
,an+2 an
故bn+22=bn+1?bn.
因为bn+1≥bn,所以bn+2≥bn+1,则bn+22≥bn+12≥bn+1?bn.
所以bn+2=bn+1=bn.
∴
=an+3 an+1
,即an+3=an+1?an+2 an
.an+2 an
因为数列{cn}是等比数列,所以
=cn+1 cn
,即cn+2 cn+1
=
a
an
?a
,
a
an+1
?a
把an+3=an+1?
代入化简得an+12=an?an+2,an+2 an
所以数列{an}为等比数列.