求这道数学题,为什么要舍去一组答案,谢谢

2025-05-12 02:42:40
推荐回答(1个)
回答1:

a=-3,b=3的时候
f'(x)=3x²-6x+3=3(x-1)²≥0,只有x=1的时候。f'(1)=0
当x≠1的时候,f'(x)>0
所以在(-∞,1]和[1+∞)两个区间内,f(x)都是单调增函数。
所以x=1并不是f(x)的极值点,只是单调递增区间中的一个点。
和题目要求的x=1是极值点不相符,所以要舍去。