高中数学——基本不等式已知x+y+z=1,求证:(1)x^2+y^2+z^2≥1...

2025-05-13 11:17:45
推荐回答(1个)
回答1:

x+y+z=1有x^2+y^2+z^2+2xy+2xz+2yz=1又有2xy≤x^2+y^2
2yz≤y^2+z^2
2zx≤z^2+x^2所以有3(x^2+y^2+z^2)≥1所有x^2+y^2+z^2≥1/3
有[x^(1/2)+y^(1/2)+z^(1/2)]^2=x+y+z+2(xy)^(1/2)+2(yz)^(1/2)+2(xz)^(1/2)同上题,2(xY)^(1/2)≤x+y所以有[x^(1/2)+y^(1/2)+z^(1/2)]^2≤3(x+y+z)所以x^(1/2)+y^(1/2)+z^(1/2)≤3^(1/2)
那个是公式啊.(x+y+z)^2=x^2+y^2+z^2+2xy+2xz+2yz