已知直线l:kx-y+1+2k=0(k∈R),证明直线l过定点

2025-05-08 19:47:24
推荐回答(2个)
回答1:

.

回答2:

1、令k=1得x-y+1+2=0,即x-y=-3
令k=-1得-x-y+1-2=0,即x+y=-1
解得x=-2,y=1
∴直线l过定点(-2,1)

2、∵kx-y+1+2k=0,∴y=kx+1+2k
若直线不经过第四象限,则
k>0
1+2k≥0
解得k>0

3、在kx-y+1+2k=0中,分别令x=0,y=0
得A(-1/k-2,0),B(0,1+2k)
△AOB的面积S=1/2|-1/k-2|(1+2k)
=1/2(1/k+2)(1+2k)
=1/2(1/k+4k)+2≥1/2×2√(1/k·4k)+2=4
∴S的最小值为4
当1/k=4k,即k=±1/2时等号成立
当k=1/2时,kx-y+1+2k=1/2x-y+2=0
直线l方程为1/2x-y+2=0
当k=-1/2时,kx-y+1+2k=-1/2x-y+1+2×(-1/2)=0
直线l方程为-1/2x-y=0