洛必达法则求极限

666
2025-05-10 02:13:28
推荐回答(3个)
回答1:

∞/∞型,可以用洛必达法则
上下求导
=(secx)^2/3(sec3x)^2
=(1/3)*(cos3x)^2/(cosx)^2
这是0/0型,可以用洛必达法则
lim(x→π/2)(cos3x)^2/(cosx)^2
=[lim(x→π/2)(cos3x)/(cosx)]^2 (这里是整个极限的平方)
=[lim(x→π/2)-3sin3x/(-sinx)]^2
lim(x→π/2)-3sin3x=-3
lim(x→π/2)-sinx=-1
所以[lim(x→π/2)-3sin3x/(-sinx)]^2
=3^2=9

所以原极限=(1/3)*9=3

回答2:


以上,请采纳。

回答3: