=∫2sin2t√(1-2sin²tcos²t)dt=∫sin2t√(4-2sin²2t)dt=-1/2∫√(2+2cos²2t)dcos2t=√2/2∫(0到1)√(u²+1)du=1/√2∫(0到π/4)secxdtanx=(1/2√2)(secxtanx+ln|secx+tanx|)=(√2+ln(√2+1))/2√2
步行道,a