已知数列{an}前n项和为Sn,且满足a1=12,an+2SnSn-1=0(n≥2)(1)求证:{1Sn}是等差数列;(2)求数列

2025-05-12 21:00:11
推荐回答(1个)
回答1:

(1)证明:∵a1

1
2
,an+2SnSn-1=0 (n≥2),故 Sn-Sn-1 +2SnSn-1=0,∴
1
Sn
-
1
Sn?1
=2,
{
1
Sn
}
是以2为公差、以2为首项的等差数列.
(2)由(1)可得
1
Sn
=2+(n-1)2=2n,∴Sn =
1
2n
,Sn-1=
1
2(n?1)

∴an =Sn-Sn-1=
1
2n
-
1
2(n?1)
=
?1
2n(n?1)
,(n≥2).
综上可得  an =
1
2
  ,    n=1
?1
2n(n?1)
  ,    n≥2


(3)∵bn
1
2n?Sn
2n
2n
=n?(
1
2
)n?1
,故 Tn=1?(
1
2
)0+2?(
1
2
)1+3?(
1
2
)2+…+n?(