(1)证明:∵a1=
,an+2SnSn-1=0 (n≥2),故 Sn-Sn-1 +2SnSn-1=0,∴1 2
-1 Sn
=2,1 Sn?1
故{
}是以2为公差、以2为首项的等差数列.1 Sn
(2)由(1)可得
=2+(n-1)2=2n,∴Sn =1 Sn
,Sn-1=1 2n
.1 2(n?1)
∴an =Sn-Sn-1=
-1 2n
=1 2(n?1)
,(n≥2).?1 2n(n?1)
综上可得 an =
.
, n=11 2
, n≥2?1 2n(n?1)
(3)∵bn=
=1
2n?Sn
=n?(2n 2n
)n?1,故 Tn=1?(1 2
)0+2?(1 2
)1+3?(1 2
)2+…+n?(1 2