如图1,在△ABC中,AB=BC=5,AC=6.△ECD是△ABC沿CB方向平移得到的,连接AE,AC和BE相交于点O.(1)判

2025-05-08 13:42:45
推荐回答(1个)
回答1:

(1)四边形ABCE是菱形.
证明:∵△ECD是△ABC沿BC方向平移得到的,
∴EC∥AB,EC=AB.
∴四边形ABCE是平行四边形.
又∵AB=BC,
∴四边形ABCE是菱形.

(2)①四边形PQED的面积不发生变化,理由如下:
由菱形的对称性知,△PBO≌△QEO,
∴S△PBO=S△QEO
∵△ECD是由△ABC平移得到的,
∴ED∥AC,ED=AC=6.
又∵BE⊥AC,
∴BE⊥ED
∴S四边形PQED=S△QEO+S四边形POED=S△PBO+S四边形POED=S△BED=

1
2
×BE×ED=
1
2
×8×6=24.
②如图,当点P在BC上运动,使以点P、Q、R为顶点的三角形与△COB相似.
∵∠2是△OBP的外角,
∴∠2>∠3.
∴∠2不与∠3对应.
∴∠2与∠1对应.
即∠2=∠1,
∴OP=OC=3.
过O作OG⊥BC于G,则G为PC的中点.可证△OGC∽△BOC.
∴CG:CO=CO:BC.
即CG:3=3:5.
∴CG=
9
5

∴PB=BC-PC=BC-2CG=5-2×
9
5
=
7
5