(1)四边形ABCE是菱形.
证明:∵△ECD是△ABC沿BC方向平移得到的,
∴EC∥AB,EC=AB.
∴四边形ABCE是平行四边形.
又∵AB=BC,
∴四边形ABCE是菱形.
(2)①四边形PQED的面积不发生变化,理由如下:
由菱形的对称性知,△PBO≌△QEO,
∴S△PBO=S△QEO
∵△ECD是由△ABC平移得到的,
∴ED∥AC,ED=AC=6.
又∵BE⊥AC,
∴BE⊥ED
∴S四边形PQED=S△QEO+S四边形POED=S△PBO+S四边形POED=S△BED=
×BE×ED=1 2
×8×6=24.1 2
②如图,当点P在BC上运动,使以点P、Q、R为顶点的三角形与△COB相似.
∵∠2是△OBP的外角,
∴∠2>∠3.
∴∠2不与∠3对应.
∴∠2与∠1对应.
即∠2=∠1,
∴OP=OC=3.
过O作OG⊥BC于G,则G为PC的中点.可证△OGC∽△BOC.
∴CG:CO=CO:BC.
即CG:3=3:5.
∴CG=
.9 5
∴PB=BC-PC=BC-2CG=5-2×
=9 5
.7 5