. 首先我们需要找到△ABE和△ADH的面积,当然还有△ECH的面积——(1/2)×6×2=6(因为C是对角线的交点,所以C到EH的距离是宽的一半,也就是2)。因为S△AEF+S△AGH=(1/2)×6×4=12,阴影部分的面积是10,所以S△ABE+S△ADH=12-10=2. 这样S四边形ABCD=6-2=4(cm�0�5)。