解答:证明:①∵AB是半圆直径,
∴AO=OD,
∴∠OAD=∠ADO,
∵AD平分∠CAB交弧BC于点D,
∴∠CAD=∠DAO=∠CAB,
∴∠CAD=∠ADO,
∴AC∥OD,
∴故①选项正确.
②过点O作OG⊥AC,
∵OG⊥AC,
∴=,
∵半径OC⊥AB于点O,
∴==,
∴AG=GC=CD,
∴AC<2CD,
∴故②选项错误.
③∵在△AEC和△AEO中,只有∠CAD=∠DAO,其它两角都不相等,
∴不能证明△AEC和△AEO全等,
∴故③选项错误;
④过点E作EM⊥AC于点M,
∵AO=CO,AO⊥CO,
∴∠CAO=∠ACO=45°,
∴CM=ME,
∵AD平分∠CAB分别交OC于点E,
EO⊥AO,EM⊥AC,
∴ME=EO,
∴CM=ME=EO,
∴CE=ME=EO,
由①得:∵AC∥OD,
∴△ACE∽△DOE,
∴=,
∴=()2=2,
∴S△AEC=2S△DEO;故此选项正确,
.⑤∵AD平分∠CAB交弧BC于点D,
∴∠CAD=∠DAC=×45°=22.5°,
∴∠COD=45°,
∵AC∥DO,
∴∠CAD=∠ADO=22.5°,
∴△ADO是等腰三角形,
△DOE中,∠ADO=22.5°,∠EOD=45°,
∴△ADO和△DOE不相似,
∴线段OD不是DE与DA的比例中项,
∴故⑤错误.
综上所述,只有①④正确.
故答案为:①④.