an=3x2^(n-1)
a11=3×2^10=3072
s15=3x[(1一1x2^15)/(1一2)]
=3×32767
=98301
S10=3×(2^10-1)
=3×1023
=3069
S15-S10=95232
an=3*2^(n-1)
a11=3*2^10
a12=3*2^11
a13=3*2^12
a14=3*2^13
a15=3*2^14
a11+a12+a13+a14+a15=3(2^10+2^11+10^12+2^13+2^14)
=3*2^10*(1+2+2^2+2^3+2^4)
=3*2^10[(1-2^4)/(1-2)]
=45*2^10
=46060
解:an=3*2^(n-1);∴a11=3*2^(11-1)=3*2^10=3*64*4=768
通项公式3*2的(n-1)次方。是个等比数列
3*2的n次方