设数{a n }是单调递增的等差数列,前三项的和为12,前三项的积为48,则它的首项是______

2025-05-10 10:27:56
推荐回答(1个)
回答1:

设等差数列的公差为d,
∵a 1 +a 2 +a 3 =3a 2 =12
∴a 2 =4
∵前三项的积为48即(a 2 -d)a 2 (a 2 +d)=48
解得d 2 =4
∵数列{a n }是单调递增的等差数列,
∴d>0
∴d=2
故答案为2