由已知得a1(1+q²)=10,a1(q+q²)=6,故(1+q²)/(q+q²)=10/6=5/3,5(q²+q)=3(q²+1),2q²+5q-3=0,q=1/2或q=-3,等比数列为正,故q=1/2,代入可得a1=8,而后可得通项公式an=8*(1/2)^(n-1)=16/2^n
因等比数列,设比x,由条件的
a1+a1*x²=10~~~(1)
a1*x+a1*x²=6~~~~(2)
即
a1(1+x²)=10~~~~(3)
a1(x+x²)=6~~~~(4)
(3)/(4)并化简:
4x²+10x-6=0
解方程,取正数
x=1/2
带入(1) 得a1=8
an=8*(1/2)n次方
前五项a1~a5分别为:
8,4,2,1,1/2
q=6/10=3/5
a1+9a1/25=10
a1=250/36=125/18
an=125÷18×(3/5)^n-1
a5=125/18×81/625=0.9
s5=10+6+0.9=16.9
设a2=a1*q,a3=a1*q^2
a1(1+q^2)=10, a1q(1+q)=6
(1+q^2)/(q+q^2)=10/6=5/3
跳过几步,可以解得
a1=8,q=1/2