已知数列{an}满足:a1=a2=1,且an+2=a2n+1+2an,问是否存在常数p,q,使得对一切n∈N*都有an+2=pan+1+qan

2025-05-14 11:32:06
推荐回答(1个)
回答1:

∵an+2=

a
+2
an

an+2anan+12+2
∵若存在常数p,q,使得对一切n∈N*都有an+2=pan+1+qan
∴panan+1+qan2an+12+2,①
又a1=a2=1,令n=1,代入①,得:p+q=3,
a3=pa2+qa1=p+q=3,
令n=2,代入①得:3p+q=9+2=11,
联立②③得:p=4,q=-1,
∴存在p=4,q=-1,使得an+2=pan+1+qan