(1)证明:取AC的中点D,连结SD、DB,
∵SA=SC,AB=BC,
∴AC⊥SD,AC⊥BD,
∴AC⊥平面SDB,
∵SB?平面SDB,
∴AC⊥SB;
(2)解:∵AC⊥平面SDB,AC?平面ABC,
∴平面SDB⊥平面ABC,
过N点作NE⊥BD于E,则NE⊥平面ABC,
过E点作EF⊥CM于F,连结NF,则NF⊥CM,∴∠NFE为二面角N-CM-B的平面角,
∵NE=
SD=1 2
,EF=
2
MB=1 4
,1 2
在Rt△NEF中,tan∠NFE=
=2EN EF
,∴∠NFE=arctan2
2
2
(3)解:在Rt△NEF中,NF=
=
EF2+EN2
,3 2
S△CMN=
CM?NF=1 2
,S△CMB=3
3
2
BM?CM=21 2
3