解:∵x²+y²+z²=49,x+y+z=x³+y³+z³=7 ∴(x+y+z)³=343,(x+y+z)³=(x²+y²+z²)(x+y+z)+2(xy+yz+zx)(x+y+z)=343 ∴(xy+yz+zx)(x+y+z)=0,得:3xyz+x²y+x²z+xy²+y²z+yz²+xz²=0,-3xyz=x²(7-x)+y²(7-y)+z²(7-z),-3xyz=7(x²+y²+z²)-(x³+y³+z³),-3xyz=48*7,xyz=112