(1)∵f'(x)=3ax2+2bx+c,且y=f'(x)的图象经过点(-2,0),(
,0),2 3
∴
?
?2+
=?2 3
2b 3a ?2×
=2 3
c 3a
b=2a c=?4a
∴f(x)=ax3+2ax2-4ax,
由图象可知函数y=f(x)在(-∞,-2)上单调递减,在(?2,
)上单调递增,在(2 3
,+∞)上单调递减,2 3
由f(x)极小值=f(-2)=a(-2)3+2a(-2)2-4a(-2)=-8,解得a=-1
∴f(x)=-x3-2x2+4x
(2)要使对x∈[-3,3]都有f(x)≥m2-14m恒成立,
只需f(x)min≥m2-14m即可.
由(1)可知函数y=f(x)在[-3,-2)上单调递减,在(?2,
)上单调递增,在(2 3
,3]上单调递减2 3
且f(-2)=-8,f(3)=-33-2×32+4×3=-33<-8
∴f(x)min=f(3)=-33(11分)-33≥m2-14m?3≤m≤11
故所求的实数m的取值范围为{m|3≤m≤11}.