如图,已知AB是⊙O的弦,点C是弦AB上任意一点(不与点A.B重合),连接CO并延长CO交⊙O于点D,连接AD,DB

2025-05-08 13:51:09
推荐回答(1个)
回答1:

(1)连接OA,
∵OA=OD=OB,
∴∠DAO=∠ADC,∠OBC=∠OAB,
∵∠OBC=38°,∠ADC=19°,
∴∠DAO=19°,∠OAB=38°,
∴∠DAB=19°+38°=57°,
∴由圆周角定理得:∠DOB=2∠DAB=2×57°=114°.

(2) ∵C为AB中点,OC过O,
∴DC⊥AB,BC=AC=2
3

∵OB=4,
∴在Rt△OCB中,由勾股定理得:OC=2,
即DC=OD+OC=4+2=6,
在Rt△DCB中,由勾股定理得:BD=
D C 2 +C B 2
=
6 2 +(2
3
) 2
=4
3