y=2sin(3x+1)+e^2 y=lnx⼀1+x^2 求一阶导数.请给我详细的步骤.越详细越好.谢谢啦

2025-05-10 22:33:40
推荐回答(1个)
回答1:

y=2sin(3x+1)+e^2

y'= [2sin(3x+1)]' + [e^2]'
= 2cos(3x+1)*(3x+1)' + 0
= 2cos(3x+1)*3
= 6cos(3x+1)

y=ln[x/1+x^2] = lnx - ln(1+x^2)

y'= [ lnx - ln(1+x^2)]'
= [lnx]' - [ln(1+x^2)]'
= 1/x - (1+x^2)'/(1+x^2)
= 1/x - 2x/(1+x^2)