∵cosx=-3/5,x∈(π/2,π)
∴sinx>0
即sinx=√(1-cos²x)=4/5
∴tanx=sinx/cosx=-4/3
则tan(π/4+x)
=[tan(π/4)+tanx]/[1-tan(π/4)tanx]
=(1-4/3)/(1+4/3)
=(-1/3)/(7/3)
=-1/7
∵x∈(π/2,π).cosx=-3/5
∴tanx=-4/3
tan(x+π/4)=[tanx+tan(π/4)]/[1-tanxtan(π/4)]
=(1-4/3)/(1+4/3)
=-1/7