cosx=—3⼀5. x属于(p⼀2,p),tan(p⼀4+x)=? 过程

cosx=—3/5. x属于(p/2,p),tan(p/4+x)=? 过程
2025-05-09 11:10:48
推荐回答(2个)
回答1:

∵cosx=-3/5,x∈(π/2,π)
∴sinx>0
即sinx=√(1-cos²x)=4/5
∴tanx=sinx/cosx=-4/3
则tan(π/4+x)
=[tan(π/4)+tanx]/[1-tan(π/4)tanx]
=(1-4/3)/(1+4/3)
=(-1/3)/(7/3)
=-1/7

回答2:

∵x∈(π/2,π).cosx=-3/5
∴tanx=-4/3
tan(x+π/4)=[tanx+tan(π/4)]/[1-tanxtan(π/4)]
=(1-4/3)/(1+4/3)
=-1/7