解:(1)连接OD、BD.
∵AB是⊙O的直径,
∴∠ADB=90°,则∠CDB=90°,
点E为BC的中点,
∴ED=EB,
∴∠EDB=∠EBD,
∵OB=OD,
∴∠ODB=∠OBD,
∴∠ODE=∠OBD+∠EBD=90°,
∴DE是⊙O的切线;
(2)过点D作⊙O的切线交BC于E,证明BE=CE;
证明:如图DE为⊙O切线
∴∠ODE=∠OBC=90°,
∵OB=OD,∴∠ODB=∠OBD,∴∠EDB=∠EBD,
∴ED=EB,
∵∠ODE=90°,
∴∠ODA+∠CDE=180°-90°=90°,
又∠C+∠A=90°,∠OAD=∠ODA,
∴∠C=∠CDE,
∴EC=ED,则EB=EC;
(3)解方程:x2-10x+24=0,
得x1=4,x2=6,
∵AC>AB,∴AB=4,AC=6,
∴BC=
=
AC2?AB2
=2
20
.
5