(Ⅰ)证明:由a1=1,S2=1+a2,得3t(1+a2)-(2t+3)=3t.
a2=
,2t+3 3t
=a2 a1
…2分2t+3 3t
又3tSn-(2t+3)Sn-1=3t,…①
3tSn-1-(2t+3)Sn-2=3t,…②
①-②得3tan-(2t+3)an-1=0.
∴
=an an?1
,n=2,3,4…4分2t+3 3t
∴{an}是一个首项为1,公比为
的等比数列…5分2t+3 3t
(Ⅱ)解:由f(t)=
=2t+3 3t
+2 3
,得bn=f(1 t
)=1 bn?1
+bn-1.2 3
∴{bn}是首项分别为1,公差为
的等差数列,…7分2 3
∴bn=1+
(n-1)=2 3
…9分2n+1 3
(Ⅲ)解:由bn=
,可知{b2n-1}和{b2n}是首项分别为1和4n+1 3
,公差均为5 3
的等差数列,于是b2n=4 3
,4n+1 3
∴b1b2-b2b3+b3b4 -b4b5+…+b2n-1b2n-b2nb2n+1=b2(b1-b3)+b4(b3-b5)+…+b2n(b2n-1-b2n+1)…11分
=-
(b2+b4+…+b2n)=-4 3
×4 3
n(1 2
+5 3
)=-4n+1 3
(2n2+3n)…14分4 9