如图,AB是半圆直径,半径OC⊥AB于点O,AD平分∠CAB分别交OC于点E,交弧BC于点D,连结CD、OD,给出以下四

2025-05-10 00:34:14
推荐回答(1个)
回答1:

①∵AD平分∠CAB,
∴∠CAD=∠BAD,
∵OA=OD,
∴∠BAD=∠ODA,
∴∠CAD=∠ODA,
∴AC∥OD,
∴△AEC∽△DEO,
过点E作EM⊥AC于点M,
∵AO=CO,AO⊥CO,
∴∠CAO=∠ACO=45°,
∴CM=ME,
∵AD平分∠CAB分别交OC于点E,EO⊥AO,EM⊥AC,
∴ME=EO,
∴CM=ME=EO,
∴CE=

2
CM=
2
EO,
∴CE:OE=
2
:1,
∴S△AEC=2S△DEO;故正确;
②过点O作OG⊥AC,
AG
=
CG

∵AD平分∠CAB,
CD
=
BD

∵半径OC⊥AB,
AC
=
BC

AG
=
CG
=
CD

∴AG=CG=CD,
∴2CD>AC,
故错误;
③∵AD平分∠CAB交弧BC于点D,
∴∠DAB=∠CAD=
1
2
∠CAB=22.5°,
∴∠COD=45°,
∵AC∥DO,
∴∠CAD=∠ADO=22.5°,
∴△ADO是等腰三角形,
△DOE中,∠ADO=22.5°,∠EOD=45°,
∴△ADO和△DOE不相似,
∴线段OD不是DE与DA的比例中项,
故错误;
④∵AB是半圆直径,
∴OC=OD,
∴∠OCD=∠ODC=67.5°,
∵∠CAD=∠ADO=22.5°,
∴∠CDE=∠ODC-∠ADO=67.5°-22.5°=45°,
∴△CED∽△CDO,
∴CD:OC=CE:CD,
∴CD2=OC?CE=