解:(1)设正方形边长为a,连接A1D∵B1A1⊥AA1DD1∴B1A1丄A1D又∵A1D=√2a A1B1=a∴B1D=√3a∴sin即(2)作C1E⊥CD1则C1E=a√2/2∵A1D1⊥CC1DD1∴A1D1丄C1E∴C1E⊥A1D1BC连接EB,在Rt△BCE中BE=√a^2+a^2/2=a√6/2,在Rt△C1BE中Sin(3)△C1BD与△A1BD都为正三角形且全等,作A1M丄BD∴C1M⊥BDC1M=A1M=a√6/2,A1C1=a√2∴Cos∴上述为这三个小题解题过程,需要初中平面几何知识及高中立体几何知识。望采纳!