tanB=(cosA-sinA)/(cosA+sinA),得tanB=(1-tanA)/(1+tanA)=(tanπ/4-tanA)/(1+tanA*tanπ/4)=tan(π/4-A)因为A.B都是锐角0Bπ/2,0Aπ/2-π/4π/4-Aπ/4在(-π/2,π/2)区间上tanx为单调函数 tanB=tan(π/4-A)所以B=π/4-AA+B=π/4所以tan(A+B)=1