(Ⅰ)∵点D是正△ABC中BC边的中点,∴AD⊥BC,
又A1A⊥底面ABC,∴A1D⊥BC,∵BC∥B1C1,∴A1D⊥B1C1.
(Ⅱ)作DE⊥AC于E,∵平面ACC1⊥平面ABC,
∴DE⊥平面ACC1于E,即DE的长为点D到平面ACC1的 距离.
在Rt△ADC中,AC=2CD=a,AD=
a.
3
2
∴所求的距离DE=
=CD?AD AC
a.
3
4
(Ⅲ)答:直线A1B∥平面ADC1,证明如下:
连接A1C交AC1于F,则F为A1C的中点,∵D是BC的中点,∴DF∥A1B,
又DF?平面ADC1,A1B?平面ADC1,∴A1B∥平面ADC1.