见图片解答
设门宽为x则半圆面积为:S1=0.5*π*(x/2)^2=(πx^2)/8∴矩形面积S2=5-(πx^2)/8∴矩形高h=[5-(πx^2)/8]/x门框周长l=0.5*πx+2*[5-(πx^2)/8]/x+x=(π/4+1)x+10/xdl/dx=π/4+1-10/(x^2)令=0得x=40/(π+4)即门宽为40/(π+4)时周长最短