A(n+1)=(n+1)An/n+(n+1)/2^nA(n+1)/(n+1)=An/n+1/2^n依此类推An/n=A(n-1)/(n-1)+1/2^(n-1)A(n-1)/(n-1)=A(n-2)/(n-2)+1/2^(n-2)……A2/2=A1/1+1/2^1上式相加,相同项消去An/n=A1/1+(1/2^1+1/2^2+……+1/2^(n-1))=1+1/2×(1-(1/2)^(n-1))/(1-1/2)=2-1/2^nBn=2-1/2^n