x=t - arctant,y=ln(1+t²),则 dy/dx = (dy/dt) / (dx/dt)=[2t/(1+t²)] / [1 - 1/(1+t²)]=2 / t,d²y/dx² = d(dy/dx) / dx=(-2/t²) / [1 - 1/(1+t²)]=-2(1+t²) / t^4