解:1设P点的坐标是(x,y)
据题意有:[(y-1)/(x+1)]×[(y+1)/(x-1)]=-1/3
整理得x^2/3+y2=4/3
∴P点的轨迹方程是一个椭圆
2设M点的坐标是(-m,n) ,N点的坐标是(m,-n) 这里设m>0,n>0,设P点的坐标是(x,y)
据题意M、N、P都是椭圆上的点
∴m^2/3+n^2=4/3
x^2/3+y^2=4/3
二式相减有:(y^2-n^2)/(x^2-m^2)=-1/3
直线MP的斜率:(y-n)/(x+m)
直线NP的斜率(y+n)/(x-m)
二斜率相乘得:(y^2-n^2)/(x^2-m^2)=-1/3
∴在此椭圆上,任意两个关于原点对称的点与椭圆上任意一点的直线的斜率乘积是定值.