数学谢谢 急急急急急急

铅笔那里谢谢
2025-05-08 19:12:45
推荐回答(4个)
回答1:

不定积分结果不唯一求导验证应该能够提高凑微分的计算能力先写别问唉。

对不起打扰了。数字帝国GG泛滥但是是一个计算器网页。

回答2:

解:f(x)=sinx+√3×cosx
即f(x)=asinx+bcosx形式化成f(x)=Asin(wx+Q),第一步求提取√(a^2+b^),√(a^2+b^2)[a/√(a^2+b^2)sinx+b/√(a^2+b^2)cosx];第二步,设cosQ=a/√(a^2+b^2),SinQ=b/√(a^2+b^2);则f(x)=√(a^2+b^2)sin(x+Q)。因此,f(x)=sinx+√3cosx=2(1/2×sinx+√3/2×cosx)=2(sinxcos丌/3+cosxsin丌/3)=2sin(x+丌/3),T=2丌/|w丨=2丌,f(x)最大值=丨A丨=2,f(x)最小值=-丨A丨=-2

回答3:

型如f(Ⅹ)=asinωX十bcosωX型的函数的周期,最值问题,常用辅助角公式:
f(Ⅹ)=asinωx+bcosωx
=√(a²+b²)sin(ωⅹ+φ),
其中tanφ=b/a,
最小正周期:T=2π/丨ω丨,
最值由函数的有界性可得。
求y=sinⅹ+√3cosx的周期,最大值和最小值。
解:
y=sinx+√3cosⅹ
=2(1/2·sinX+√3/2·cosx)
=2(sinⅹcosπ/3+cosxsinπ/3)
=2sin(ⅹ+π/3),
∵最小正周期:T=2π/ω=2π,
∴周期为:2Kπ+2π,(K∈z),
∵-1≤sin(x+π/3)≤1,
∴-2≤2sin(ⅹ+π/3)≤2,
∴最大值为2,最小值为-2。

回答4:

这是正弦型函数的基本性质,参见高中数学课本必修四