圆(X-1)²+(Y-1)²=4圆的一条弦AB长是2√2, 坐标原点是O,且OA和OB垂直 求AB的方程
解:设A(x₁,y₁); B(x₂,y₂); AB所在直线的方程为 y=kx+b, 代入园的方程,得:
(x-1)²+(kx+b-1)²=4, 展开,整理得:
(1+k²)x²-2(kb+k+1)x+b²-2b-2=0
x₁+x₂=2(kb+k+1)/(1+k²).......................................................(1)
x₁x₂=(b²-2b-2)/(1+k²)...........................................................(2)
y₁+y₂=(kx₁+b)+(kx₂+b)=k(x₁+x₂)+2b
=2k(kb+k+1)/(1+k²)+2b=(4k²b+2k²+2k+2b)/(1+k²)....................(3)
y₁y₂=(kx₁+b)(kx₂+b)=k²(x₁x₂)+kb(x₁+x₂)+b²
=k²(b²-2b-2)/(1+k²)+2kb(kb+k+1)/(1+k²)+b²
=(3k²b²-2k²+2kb)/(1+k²)+b²=(4k²b²-2k²+2kb+b²)/(1+k²)..............(4)
│AB│=√[(x₁+x₂)²+(y₁+y₂)²-4(x₁x₂+y₁y₂)]=2√2.............(5)
OA⊥OB,故OA•OB=x₁x₂+y₁y₂=0.........................................(6)
将(1)(2)(3)(4)依次代入(5)(6),即得含k,b的两个独立的方程,然后求解.很烦,自己作吧!
方法是这样,可能计算有误。