已知在□ABCD中,AE⊥BC于E,DF平分∠ADC交线段AE于F.(1)如图1,若AE=AD,∠ADC=60°,请直接写出线段

2025-05-09 16:50:05
推荐回答(1个)
回答1:

(1)CD=AF+BE,
理由是:延长EA到G,使得AG=BE,连接DG,
∵四边形ABCD是平行四边形,
∴AB=CD,AB CD,AD=BC,
∵AE⊥BC,
∴∠AEB=∠AEC=90°,
∴∠AEB=∠DAE=90°,
∴∠DAG=90°,
在△ABE和△DGA中
AE=AD
∠BEA=∠GAD
BE=AG

∴△ABE≌△DGA,
∴DG=AB=CD,∠1=∠2,
∵平行四边形ABCD,AE⊥BC,
∴∠B=∠ADC=60°=∠G,AE⊥AD,
∴∠1=∠2=30°,
∵DF平分∠ADC,
∴∠3=∠4=30°,
∴∠AFD=60°=∠GDF,
∴DG=GF=AF+AG,
∴CD=AB=DG=AF+BE,
即CD=AF+BE.

(2)(1)中的结论仍然成立.
证明:延长EA到G,使得AG=BE,连接DG,
∵四边形ABCD是平行四边形,
∴AB=CD,AB CD,AD=BC,
∵AE⊥BC于点E,
∴∠AEB=∠AEC=90°,
∴∠AEB=∠DAG=90°,
∴∠DAG=90°,
在△ABE和△DGA中
BE=GA
∠GAD=∠BEA
AE=AD

∴△ABE≌△DGA,
∴∠1=∠2,DG=AB,∠B=∠G,
∵四边形ABCD是平行四边形,
∴∠B=∠ADC,
∵∠B+∠1=∠ADC+∠2=90°,∠3=∠4,
∴∠GDF=90°-∠4,∠GFD=90°-∠3,
∴∠GDF=∠GFD,
∴GF=GD=AB=CD,
∵GF=AF+AG=AF+BE,
∴CD=AF+BE.

(3)bCD=aAF+bBE,
理由是:延长EA到G,使得
BE
AG
=
a
b
,连接DG,
即AG=
b
a
BE,
∵四边形ABCD是平行四边形,
∴AB=CD,AB CD,AD=BC,
∵AE⊥BC于点E,
∴∠AEB=∠AEC=90°,
∴∠AEB=∠DAG=90°,
∴∠DAG=90°,
即∠AEB=∠GAD=90°,
AE
AD
=
BE
AG
=
a
b

∴△ABE △DGA,
∴∠1=∠2,
AB
DG
=
a
b

∴∠GFD=90°-∠3,
∵DF平分∠ADC,
∴∠3=∠4,
∴∠GDF=∠2+∠3=∠1+∠4=180°-∠FAD-∠3=90°-∠3.
∴∠GDF=∠GFD,
∴DG=GF,
AB
DG
=
a
b
,AB=CD(已证),
∴bCD=aDG=a(
b
a
BE+AF),
即bCD=aAF+bBE.