x3+y3-(x2y+xy2)=x2(x-y)-y2(x-y)=(x-y)(x2-y2)=(x-y)(x+y)(x-y)=(x-y)^2(x+y)因为X,Y都是正实数则x+y>0 (x-y)^2>=0所以x3+y3-(x2y+xy2)>=0x3+y3>=x2y+xy2
(x^3+y^3)/(x^2y+xy^2)=(x+y)(x^2-xy+y^2)/xy(x+y)=x/y + y/x -1 ≥2√(x/y*y/x)-1=2-1=1∴x^3+y^3≥x^2y+xy^2