零点分段法谁给我讲讲行吗? 通俗点。。

2025-05-09 14:28:23
推荐回答(1个)
回答1:

利用绝对值的几何性质来做
|x+1|+|x+2|>4可以看做是"X与-1的距离加上X与-2的距离大于4"
在数轴上标出这两个点
在从数轴上分析:
-1与-2间间隔为1所以X不能在-1与-2之间(如果X在他们之间的话X与-1的距离加上X与-2的距离就为1了)
从这两个点的左边看 暂且先求使X与-1和-2间的距离和为4的
那就是(4-1)/2=1.5 所以当X小于(-2-1.5=-3.5)时 X与-1的距离加上X与-2的距离大于 再从右边来看也是一样的当X大于(-1+1.5=1/2)时
X与-1的距离加上X与-2的距离大于4
所以解集就为X大于1/2或X小于-3.5
我觉得首先要掌握零点分段法,由数轴来看开始会比较绕, 但习惯了也会很方便。
编辑本段
方法二

另外一种就是在数轴上标出零点(使各个绝对值为零的X的取值),然后再分类讨论。
例如|x+1|+|x+2|>4这个不等式;
解:在数轴上标出-1,-2这两个点。
(并分为三个区域:即X小于等于-2,x大于-2且小于-1,x大于等于-1 注意要做到不重不漏!)
所以
①当x≤-2时,(x+1为负 所以取相反数 x+2也一样 )
-(x+1)-(x+2)>4 解得x<-3.5
又因为x≤-2 (前提条件)
所以x<-3.5
②当-2 -x-1+x+2<4
解得:1<4 所以 解集为无解!
③当x>-1时 (都为正 俩绝对值均可直接去除)
得x+1+x+2>4 解得:x>0.5
又因为x>-1 所以x>0.5
综合①②③ 得解集为X大于1/2或X小于-3.5
个人认为,第一种做法不易理解,但过程较少。第二种做法更适合初学者,只是过程稍微多了点。但学生考试本人推荐第二种,这样比较不容易出错!