如图,三角形ABC是等边三角形,点D,E分别在BC,AC上,且BD=1⼀3BC,CE=1⼀3AC,BE与AD相交于点F,

2025-05-12 11:47:50
推荐回答(4个)
回答1:

1. ∵AB=BC=AC, BD=1/3BC,CE=1/3AC
∴BD=CE,∠ABC=∠C
∴ΔABD≌ΔBCE
∴∠BAD=∠CBE
∴∠ADC=∠ABC+∠BAD=∠BFD+∠CBE=>∠BFD=60º(因∠ABC=60º)
∴∠AFE=∠BFD=60º
2. ∵BC=AC, CE=1/3AC即CE=1/2CD,且∠C=60º
∴DE⊥AC
3. ∵∠BFD=60º(由1证得)
∴∠BFD=∠C
∴ΔBDF∽ΔBEC
∴DF/CE=BD/BE=〉DF*BE=CE*BD=〉DF*BE=CE^2
∵ΔABD≌ΔBCE(由1证得)
∴AD=BE
∴CE^2=DF*DA
4. ∵∠BAD=∠CBE(由1证得), ∠ABC=∠BAC=60º
∴∠ABE=∠EAF
∵∠AFE=60º(由1证得)
∴∠AFE=∠BAC
∴ΔABE∽ΔFAE
∴AB/AF=BE/AE=〉AF*BE=AE*AB=〉AF*BE=AE*AC
所以其中正确的是1、2、3、4

回答2:

因为ΔABE∽ΔFAE,所以4正确

回答3:

234

回答4:

1,2,3,4