要求CP+PA1的最小值,可将A1C1B平面翻转至CC1B平面,此时CP+PA1=CA1即为所求
CC1B1B为边长是√2的正方形,对角线C1B=2,C1A1=CA=6,
∵∠ACB=90° ∴AB²=AC²+BC²=6²+√2²=38
A1B²=AA1²+AB²=2+38=40 =2²+6²=C1B²+C1A1²
∴∠A1C1B=90°
在四边形CBA1C1中,∠A1C1C=∠A1C1B+∠BC1C=90°+45°=135°
由余弦定理:A1C²=(A1C1)²+(C1C)²-2*A1C1*C1C*cos∠A1C1C
=6²+2-2*6*√2*(-√2/2)=38+12=50
∴CP+PA1的最小值为√50=5√2