l1:k1=-1/(a^2)l2:k2=(a^2+1)/b则k1*k2=-1[-1/(a^2)]*[(a^2+1)/b]=-1a^2+1=a^2*b>0所以b>0a+1/a=aba+1/a≥2所以ab的绝对值的最小值是2(无论a的正负)