1)证明:∵PO⊥平面ABC,∴PO⊥AC, ∵PC=PA、CD=DA,∴PD⊥AC, ∵PO交PD于平面POD,∴AC⊥平面POD, ∵AC在平面PAC中,∴平面POD⊥平面PAC; 2)解:作OM⊥PA于M、连结CM,,∵C是弧AB中点,∴CO⊥AB,又CO⊥PO, ∴CO⊥平面PAO,∴CO⊥OM, Rt△POA中,PO=√2、AO=1,∴PA=√3,OM=√6/3,AM=√3/3, ∵Rt△COA中,CO=AO=1,∴AC=√2, ∵Rt△COM中,CO=1、OM=√6/3,∴CM=√15/3, △AMC中,AM^2+CM^2=(√3/3)^2+(√15/3)^2=2,AC^2=(√2)^2=2, ∴CM⊥PA,即∠OMC是二面角B-PA-C的平面角, ∴Rt△COM中,cosOMC=OM/CM=(√6/3)/(√15/3)=√10/5
(1)∵OC=OA D是AC的中点∴AC⊥OC
∵PO⊥圆O∴PO⊥AC∴AC⊥面POD∴面POD⊥面PAC
(2)(√11)/11