解1:
设an=a1+(n-1)d,Sn=a1n+n(n-1)d/2 n∈ N
则S5=5a1+10d=70.......................................................................................(1)
a7²=a2a33,即(a1+6d)²=(a1+d)(a1+21d)....................................................(2)
联立(1)、(2)解得a1=6,d=4
所以an=6+4(n-1)=4n+2 n∈ N
解2:
Sn=2n²+4n
1/Sn=1/Sn=1/(2n²+4n)=[(1/n-1/(n+2)]/4
Tn=1/4[1/1-1/3+1/2-1/4+1/3-1/5+1/4-1/6+...+1/(n-2)-1/n+1/(n-1)-1/(n+1)+1/n-1/(1+2)]
=1/4[1+1/2-1/(n+1)-1/(n+2)]
=[3/2-1/(n+1)-1/(n+2)]/4
当n→+∞时1/(n+1)+1/(n+2)→0,此时有最大值Tnmax=(3/2-0-0)/4=3/8
当n=1的时候有最小值Tnmin=[3/2-1/(1+1)-1/(1+2)]/4=1/6
所以1/6≤Tn<3/8
以上!
希望对你有所帮助!