用数学归纳法解题 (1+1)(1+1⼀2)…(1-1⼀2缠)≤6(1-1⼀2缠),n∈N*,求证

最后一步证明:n=k+1时的详细过程
2025-05-18 03:29:36
推荐回答(1个)
回答1:

n=k时,(1+1)(1+1/2)…(1-1/2^k)<=6(1-1/2^k),n=k+1时,(1+1)(1+1/2)…(1-1/2^k)(1-1/2^(k+1))<=6(1-1/2^k)(1-1/2^(k+1))=6[1-1/2^(k+1)-(1/2^k-1/2^(2k+1))]
(1/2^k-1/2^(2k+1))>0,故6[1-1/2^(k+1)-(1/2^k-1/2^(2k+1))]<6(1-1/2^(k+1)),即(1+1)(1+1/2)…(1-1/2^
k)(1-1/2^(k+1))<6(1-1/2^(k+1)),n=k+1时命题成立。