在如图所示的直角坐标系中,四边形ABCD的各个顶点的坐标分别是A(-4,-2)B.(4,-2),C.(2,2)

D(-2,3)求这个四边形的面积
2025-05-11 01:28:26
推荐回答(3个)
回答1:

见图。

显然这个4边形的面积是,BCG的面积+ADCG的面积。

BCG的面积很简单,三角形的两个直角边长度分别是2和4,所以面积是4。

ADCG的面积也很简单,是长方形AEFG减去AED减去CFD。

长方形AEFG的长和宽分别是6和5,面积是30。

AED的两个直角边长度分别是5和2,面积是5。

CFD的两个直角边长度分别是4和1,面积是2。

所以ABCD的面积是:

30-5-2+4=27。

回答2:

首先由d点向y轴做垂线并延长,再由b点向x轴做垂线并延长与d向y轴做的垂线交于一点,设为e,连接c e两点,这样四边行abcd的面积即为直角梯形abed的面积减去三角形cde再减去三角形ceb的面积,(8+6)×5/2-8×1/2-5×2/2=26

回答3:

过D作X轴的垂线交AB于E,此时四边形被分割成直角三角形AED,梯形DEBC,S三角形=0.5*2*5=5
S四边形=0.5*(5+4)*6=27
S=27+5=32