(Ⅰ)依题意,an≠0,故可将anan-1+an-an-1=0(n≥2)整理得:
?1 an
=1(n≥2)1 an?1
所以
=1+1×(n?1)=n即an=1 an
1 n
n=1,上式也成立,所以an=
1 n
(Ⅱ)∵bn=anan+1
∴bn=
×1 n
=1 n+1
=1 n(n+1)
?1 n
1 n+1
∴Sn=b1+b2+b3++bn=(
?1 1
)+(1 2
?1 2
)+(1 3
?1 3
)++(1 4
?1 n
)=1?1 n+1
=1 n+1
n n+1
∴
Sn=lim n→∞
lim n→∞
=1n n+1