已知在各项不为零的数列{an}中,a1=1,anan-1+an-an-1=0(n≥2,n∈N+)(I)求数列{an}的通项;(Ⅱ)若

2025-05-12 18:42:13
推荐回答(1个)
回答1:

(Ⅰ)依题意,an≠0,故可将anan-1+an-an-1=0(n≥2)整理得:

1
an
?
1
an?1
=1(n≥2)
所以
1
an
=1+1×(n?1)=n
an
1
n

n=1,上式也成立,所以an
1
n

(Ⅱ)∵bn=anan+1
bn
1
n
×
1
n+1
1
n(n+1)
1
n
?
1
n+1

Snb1+b2+b3++bn=(
1
1
?
1
2
)+(
1
2
?
1
3
)+(
1
3
?
1
4
)++(
1
n
?
1
n+1
)
=1?
1
n+1
n
n+1

lim
n→∞
Sn
lim
n→∞
n
n+1
=1