高中数学,求通项公式,

2025-05-10 22:29:12
推荐回答(3个)
回答1:

 如果设F(n)为该数列的第n项(n∈N+).那么这句话可以写成如下形式:
  F(0) = 0,F(1)=F(2)=1,F(n)=F(n-1)+F(n-2) (n≥3)
  显然这是一个线性递推数列.
  通项公式的推导方法一:利用特征方程
  线性递推数列的特征方程为:
  X^2=X+1
  解得
  X1=(1+√5)/2,X2=(1-√5)/2
  则F(n)=C1*X1^n + C2*X2^n
  ∵F(1)=F(2)=1
  ∴C1*X1 + C2*X2
  C1*X1^2 + C2*X2^2
  解得C1=1/√5,C2=-1/√5
  ∴F(n)=(1/√5)*{[(1+√5)/2]^n - [(1-√5)/2]^n}(√5表示根号5)

回答2:

这是斐波那契数列,通项公式是(根号5+1/2)^n+(根号5-1/2)^n

回答3:

这个通项非常难推,可参见斐波那契数列(上网查吧)